

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

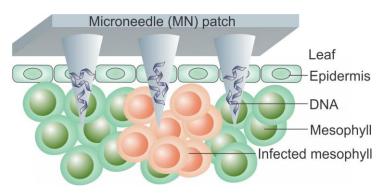
چه چیزی غذای آینده انسان را تامین خواهد کرد؟

دامداریها به سیاره زمین آسیبهای جدی وارد میکنند. آنها یکی از عوامل اصلی تخریب زمین و آب، از بین رفتن تنوع زیستی، بارانهای اسیدی، خراب شدن صخرههای مرجانی، جنگلزدایی و بهطور مسلم تغییرات اقلیمی هستند. رژیمهای گیاهی، پرورش حشرات، گوشت آزمایشگاهی و حیوانات اصلاح ژنتیکی شده از گزینههای محتمل برای جایگزینی دامداریها هستند. اما کدام گزینه بهترین است؟

محققان دانشگاه Tufts امریکا بر روی گزینههای فوق تحقیق و بررسی کرده و مشکلات ناشی از هر یک را بیان کردهاند. پیشنهاد آنها تولید گوشت آزمایشگاهی حشرات است. جزئیات تحقیق آنها بهصورت مقالهای در مجله Frontiers in Sustainable Food Systems

- https://www.sciencedaily.com/releases/2019/05/190530101136.htm
- https://www.frontiersin.org/articles/10.3389/fsufs.2019.00024/full
- https://www.cleaneatingmag.com/personalities/is-it-time-to-embrace-lab-grown-meat

فهرست مطالب:


- سخن روز
- ✓ چه چیزی غذای آینده انسان را تامین خواهد کرد؟
 - فناوري
- ✓ تکنیک جدید برای تسریع تشخیص بیماریهای گیاهی
 - نوآوري
 - ✓ تبدیل قند به ماده جدید به کمک باکتریهای مفید
 - ✓ یافتههای جدید درباره سیستم دفاعی گیاهان
 - 🗸 علفكشها
 - ✓ اثرات افزایش دما بر روی غلظت علف کش در هوا
 - كنترل بيولوژيكي
- ✓ بهترین زمان و مکان برای کنترل بیولوژیکی آفت سن
 قهوهای
 - ژنتیک گیاهی
 - ✓ کشف تاریخچه تکامل گردوی ایرانی
 - معرفی کتاب همراه با لینک برای دانلود
 - ✓ چشمانداز اقتصاد جهانی ژوئن ۲۰۱۹
 - √ وضعیت و روند قیمتگذاری کربن ۲۰۱۹
 - √ فرسایش خاک
 - ✓ بازار جهانی غذاهای دریایی
 - √راهنمای کنترل بیولوژیک آفات جنگلهای طبیعی و مصنوع

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

تكنيك جديد براي تسريع تشخيص بيماريهاي گياهي

محققان دانشگاه ایالتی نورث کارولینا تکنیک جدیدی را الحاع کردهاند که با استفاده از پچهای ریز سوزن الحاط (microneedle patches) ظرف یک دقیقه می توان از (microneedle patches) بافتهای گیاهی نمونه DNA تهیه کرد. این عمل با روش الحصوص سنتی چند ساعت زمان می برد. نمونه گیری از DNA اولین المحصوص سریع بیماریهای گیاهی است. محققان امیدوارند به کمک این فناوری جدید بتوانند ابزاری قابل حمل برای تشخیص سریع بیماریهای گیاهی تولید نمایند.

بنا به اظهار Qingshan Wei محقق دانشگاه نورث کارولینا در رشته مهندسی شیمی و زیستشناسی مولکولی، برای کشاورزان پس از مشاهده علائم بیماری، تشخیص نوع بیماری بهعنوان مثال بیماری بلایت دیررس سیبزمینی برای جلوگیری از انتشار سریع بیماری بسیار مؤثر و مهم است. یکی از موانع موجود در تشخیص سریع بیماریها، مدت زمان لازم برای نمونه گیری از DNA است. این تکنیک جدید می تواند راه حل ساده و سریعی برای رفع این مشکل باشد.

بهطور معمول، برای استخراج DNA از نمونههای گیاهی از روشی بهنام استخراج CTAB استفاده میشود که باید در آزمایشگاه انجام شود و نیاز به تجهیزات داشته و ۳ الی ۴ ساعت زمان میبرد. در مقایسه با روش CTAB در تکنیک جدید فقط از پچهای ریزسوزن و یک محلول بافر آب استفاده میشود. پچها تقریبا بهاندازه یک تمبر پستی هستند و از پلیمرهای ارزان قیمت ساخته میشوند. یک رویه از پچها شامل صدها ریز سوزن است که هر یک فقط ۰/۸ میلی متر طول دارند.

Researchers have developed a new technique that uses microneedle patches to collect DNA from plant tissues in one minute, rather than the hours needed for conventional techniques. DNA extraction is the first step in identifying plant diseases, and the new method holds promise for the development of on-site plant disease detection tools.

"When farmers detect a possible plant disease in the field, such as potato late blight, they want to know what it is right away; rapid detection can be important for addressing plant diseases that spread quickly," says Qingshan Wei, an assistant professor of chemical and biomolecular engineering at North Carolina State University and co-corresponding author of a paper on the work.

"One of the obstacles to rapid detection is the amount of time it takes to extract DNA from a plant sample, and our technique provides a fast, simple solution to that problem," Wei says.

منابع:

https://www.sciencedaily.com/releases/2019/06/190610111545.htm https://pubs.acs.org/doi/10.1021/acsnano.9b00193

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

تبدیل قند به ماده جدید به کمک باکتریهای مفید

باکتریها اغلب مضر شناخته میشوند، اما باکتریهای مفیدی نیز وجود دارند که می توانند زندگی ما را بهتر و سالم تر کنند.

بهعنوان مثال در چرخه فرآوری مواد غذایی، گونههایی از باکتریهای اسید لاکتیک، به مواد غذایی مثل ماست، برخی از انواع پنیر، کلم ترش (sauerkraut) و کیمچی (نوعی غذای کرهای)، مزه ترش و طعمهای منحصر بهفردی میدهند.

محقق مركز تحقيقات كشاورزى امريكا (ARS)، كارآيي جديدي براي

باکتریهای مفید یافته است: تبدیل قند معمولی (ساکاروز) به قندی بهنام isomelezitose. این قند خاص قابلیت محافظت از سلول دارد و می تواند به طولانی تر شدن زمان نگهداری مواد غذایی، داروها، واکسنها و حتی باکتریها و قارچهای مفید مورد استفاده در کنترل آفات گیاهی کمک کند. محققان مرکز ملی تحقیقات کاربردی کشاورزی در Peoria بر روی توسعه محصولات مفید از تولیدات، مواد مازاد و تولیدات جانبی کشاورزی تحقیق میکنند. در این زمینه، قند somelezitose می تواند منجر به ایجاد فرصتهای جدید در بازار برای محصولات نیشکر و چغندرقند باشد. ارزش تجاری بازار جهانی مواد نگهدارنده و افزودنی بیش از ۲ میلیارد دلار برآورد می شود.

Bacteria sometimes get a bad rap. But there are some good ones that deserve credit for making our lives better—and even keeping us healthy, too.

On the food-processing front, for example, are species of lactic acid bacteria that give sour pickles their unique, tangy taste—as well as yogurt, some cheeses, sauerkraut, and kimchi.

Now, Agricultural Research Service (ARS) scientists in Peoria, Illinois, have a new job for these helpful bacteria: turning sucrose (table sugar) into a sugar called isomelezitose. This specialty sugar has cell-protective abilities that could help prolong the shelf life of foods, drugs, vaccines, and even friendly bacteria and fungi used to fight crop pests.

Microbiologist <u>Chris Skory</u> and his colleagues are investigating the possibility at ARS's National Center for Agricultural Utilization Research (<u>NCAUR</u>) in Peoria, where scientists develop new, value-added uses for agricultural commodities, surpluses, and byproducts. In this case, isomelezitose could open new market opportunities for sugarcane and sugar beet crops, including the <u>\$2-plus billion</u> food preservatives world market.

منبع:

https://tellus.ars.usda.gov/stories/articles/bacteria-turn-table-sugar-into-more/

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

یافتههای جدید درباره سیستم دفاعی گیاهان

محقق علوم زیستشناسی دانشگاه مریلند (UMBC) بهنام Hua I.u و همکارانش ارتباطهای جدیدی را بین ریتم شبانهروزی (ساعت بیولوژیک داخلی) گیاهان و قابلیت آنها در دفاع از خود در برابر آفات و بیماریها یافتهاند. این یافته حاصل ۱۰ سال تلاش آنها بوده و در مجله Nature برابر آفات و بیماریها یافتهاند. این تحقیق نهایتا می تواند به تولید گیاهانی مقاوم در برابر پاتوژنهای بیماریزا و همچنین به درمان بهتر بیماریهای انسانی منجر شود.

به نظر این محقق این موضوع جالب توجه است زیرا هماکنون هم در مورد گیاهان و هم حیوانات، محققان در حال بررسی ارتباط متقابل بین ساعت شبانه روزی بیولوژیک و سیستم ایمنی هستند.

گیاهان برای محافظت از خود در برابر باکتریها، قارچها و سایر آفات راهبردهای مختلفی دارند. برای مثال، بستهشدن روزنه های برگی برای جلوگیری از نفوذ برخی از باکتریها و یا ترشح مواد شیمیایی مثل اسید سالسیلیک و اسید جاسمونیک که سبب دفع باکتریها و حشرات میشوند. گیاهان همچنین انواع مختلفی از پروتئینها را تولید میکنند که نقش بسیار مهمی در سیستم دفاعی گیاهان دارند. مکانیسمهای دفاعی گیاهان مثل بسته شدن روزنهها و یا تولید اسید سالسیلیک و جاسمونیک بر اساس زمانبندی روزانه صورت میگیرد، بهطوریکه اغلب در زمانی که پاتوژنها و آفات بیشترین فعالیت را دارند، به اوج میرسند. محققان دریافتند که طبیعت هماهنگ سیستم دفاعی گیاهان با ساعت داخلی بیولوژیک آنها ارتباط دارد، و ژنی بهنام LUX در سیستم ساعت شبانهروزی گیاهان نقش بسیار مهمی در تنظیم باز و بسته شدن روزنهها در ساعت-های بخصوصی از روز و همچنین ترشح مواد شیمیایی مؤثر در دفع یاتوژنها و آفات دارد.

UMBC's Hua Lu, professor of biological sciences, and colleagues have found new genetic links between a plant's circadian rhythm (essentially, an internal clock) and its ability to fend off diseases and pests. The findings were 10 years in the making and published in *Nature Communications*this week. The results could eventually lead to plants that are more resistant to disease-causing pathogens and better treatment for human diseases.

"It's quite cool," Lu says, "because, in both plants and animals, people are beginning to study the crosstalk between the circadian clock and the immunity system."

In response to daily attacks from bacteria, fungi, and other pests, plants have evolved various strategies to protect themselves. Plants may close their stomata -- small openings in the waxy coating on their leaves -- to prevent entry by some bacteria. They might produce chemicals such as salicylic acid and jasmonic acid to repel bacteria and insects. They also make a large number of proteins that are important for successful defense.

منابع:

https://www.sciencedaily.com/releases/2019/06/190613103122.htm https://www.nature.com/articles/s41467-019-10485-6

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

اثرات افزایش دما بر روی غلظت علف کش در هوا

بر اساس نتایج یکی از آخرین تحقیقات محققان دانشگاه تنسی، با افزایش دما، مخلوط کردن دو علف کش گلیفوسیت و dicamba منجر به افزایش غلظت سم dicamba در اتمسفر می شود.

دو محقق بهنامهای تام مولر و لری استکل از بخش علوم گیاهی این دانشگاه بر روی میزان غلظت dicamba در اتمسفر پس از اضافه کردن آن به درون خاک مرطوب

بررسی و تحقیق کردهاند. ترکیب فرمولی علفکش مورد استفاده شامل (Clarity) و diglycolamine (Clarity) مخلوط (PowerMax به تنهایی نیز مورد مصرف قرار می گیرد. ترکیبهای فوق در دماهای مختلف استفاده شده و به مدت کشوند و XtendiMax به تنهایی نیز مورد مصرف قرار می گیرد. ترکیبهای فوق در دماهای مختلف استفاده شده و به مدت ۶۰ ساعت تحت کنترل و نظارت قرار گرفتهاند. سپس از هوای داخل محفظه مرطوب جهت اندازه گیری میزان dicamba نمونه برداری شده است.

بر اساس نتایج به دست آمده، همانطور که انتظار می رفته است، با افزایش دما میزان غلظت dicamba افزایش پیدا کرده است. زمانی که درجه حرارت از ۸۵ درجه فارنهایت (حدود ۳۰ درجه سانتیگراد) بیشتر می شود، غلظت این علف کش در هوا به بالاترین حد خود رسیده است. آزمایشات همچنین نشان داده اند که افزودن گلیفوسیت به فرمول dicamba سبب تشدید غلظت آن در هوا شده است

Higher temperatures and mixing glyphosate with dicamba lead to increased atmospheric concentrations of dicamba, according to scientists with the University of Tennessee Institute of Agriculture.

Tom Mueller and Larry Steckel, both professors in the UT Department of Plant Sciences, examined dicamba measurements following an application to soil inside a humidome. The dicamba formulations examined were diglycolamine (Clarity) and diglycolamine + VaporGrip (XtendiMax). Both formulations were applied as a mixture with glyphosate (Roundup PowerMax), and XtendiMax was also applied alone. Applications were made across a range of temperatures and monitored for 60 hours. Researchers then used air samplers to collect dicamba from the atmosphere within the humidome.

According to study results, as expected, more dicamba was detected in the humidome as the temperature increased, with the largest gains coming when temperatures exceeded 85 degrees. Results also showed that across temperature ranges, the addition of glyphosate to dicamba formulations increased detectable dicamba air concentrations by 3 to 9 times compared to dicamba alone.

منابع:

https://www.sciencedaily.com/releases/2019/06/190613121029.htm

 $\underline{https://www.cambridge.org/core/services/aop-cambridge-}$

core/content/view/3D51AB38D1E1B75C9D7027A8C29CD6D7/S0890037X19000368a.pdf/dicamba_vola tility in humidomes as affected by temperature and herbicide treatment.pdf

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

بهترین زمان و مکان برای کنترل بیولوژیکی آفت سن قهوهای

بر اساس نتایج تحقیق جدیدی که در دانشگاه ایالتی اورگان انجام شده-است، کنترل بیولوژیکی آفت سن قهوهای اگر در مناطق مجاور کشت محصولات کشاورزی و یا در زمان عدم استفاده از برخی از آفت کشها انجام شود، تاثیرگذاری بیشتری خواهد داشت. آفت سن قهوهای از آفات تهاجمی مزارع کشاورزی و باغات است.

جزئیات این تحقیق در مجله Economic Entomology منتشر شده-

است. شناخت بیشتر از کاربرد زنبور سامورایی (samurai wasp) در کنترل بیولوژیک آفت سن قهوهای می تواند برای باغداران در ایلت اورگان امریکا و همچنین سایر نقاط دنیا مفید باشد.

در کنترل بیولوژیک، از حشرات مفید برای مدیریت آفات کشاورزی استفاده می شود که به معنای کاهش مصرف آفت کشهای شیمیایی است. آفت سن قهوه ای بومی شرق آسیا است که بیش از ۱۰۰ نوع محصول کشاورزی از جمله بلوبری، انگور، گیلاس و آلبالو و بادام زمینی را مورد هجوم قرار می دهد. در طی دهه ۱۹۹۰، این آفت وارد امریکا شد و در حال حاضر در ۴۴ ایالت این کشور مشاهده شده و میلیون ها دلار خسارت وارد کرده است.

بزرگی زنبور سامورایی (samurai wasp) کوچکتر از سر سوزن است و مانند سن قهوهای بومی شرق آسیا است. این زنبور در داخل تخم سن قهوهای تخمریزی میکند و مانع رشد حشره میشود.

Biological control of the brown marmorated stink bug, an invasive pest that devastates gardens and crops, would be more effective in natural areas bordering crops or at times when certain insecticides aren't being applied, according to a new Oregon State University study.

The study, published in the *Journal of Economic Entomology*, advances the understanding of using the samurai waspfor biological control of the brown marmorated stink bug, and has significant implications for Oregon's growers of orchard fruits and nuts, said David Lowenstein, a postdoctoral research associate in Oregon State's College of Agricultural Sciences and lead author on the study.

Biological control is the use of beneficial insects to manage other insects, which means using less pesticides. The brown marmorated stink bug, which is native to east Asia, has a taste for more than 100 types of crops, including blueberries, wine grapes, cherries and hazelnuts. During the 1990s, it invaded the United States and is now found in 44 states, causing millions of dollars in crop damage.

منابع:

https://phys.org/news/2019-06-ideal-areas-biological-invasive-bug.html
https://academic.oup.com/jee/advance-article-abstract/doi/10.1093/jee/toz127/5497013

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

كشف تاريخچه تكامل گردوي ايراني

گردوی ایرانی (Juglans regia) به علت کیفیت چوب و طعم عالی از محصولات اقتصادی مهم در سراسر جهان است. گردوی ایرانی یکی از ۲۲ گونه از جنس Juglans است که شامل گردوی سیاه و سفید و butternuts بوده و در سراسر اروپا، امریکا و آسیا به عمل می آید.

چین بزرگترین تولید کننده گردو در جهان است، کالیفرنیا، ترکیه و ایران بعد از آن قرار دارند. اما تا کنون، تاریخچه تکامل گردو ناشناخته ماندهاست. در مورد گردو سابقه فسیلی غنی وجود دارد که نشان

. رسی کرد کرد و سابقه فسیلی غنی وجود دارد که نشان میدهند منشا گردو و تفکیک اولیه آن به گونههای سیاه و سفید به ۳۵ تا ۴۵ میلیون سال قبل در امریکای شمالی برمی گردد. با این تاریخ طولانی، امکان مهاجرت هر دو گونه گردو به دنیای قدیم (یعنی آسیا و اروپا) از طریق پلهای bering و آتلانتیک

شمالی وجود داشتهاست. با این وجود، فقط تاریخچه فسیلی گردوی سفید (butternuts) در اروپا و آسیا شناسایی شدهاست و در مورد فسیل گردوی ایرانی هیچ شناختی وجود ندارد. محققان با استفاده از دادههای ژنتیکی و با استفاده از روشهای پلیژنتیک و ژنتیک جمعیتی (population genetics) موفق

محققان با استفاده از دادههای ژنتیکی و با استفاده از روشهای پلیژنتیک و ژنتیک جمعیتی (population genetics) موفق به کشف این ناشناخته شدهاند و دریافتهاند که گردوی ایرانی حاصل هیبریداسیون بین دو گونه منقرض شده در حدود ۳/۴۵ میلیون سال قبل است.

Prized worldwide for its high-quality wood and rich flavor of delicious nuts, the Persian walnut (*Juglans regia*) is an important economic crop. The Persian walnut is one of 22 species in the genus *Juglans*, which includes black and white walnuts and butternuts, grown across Europe, the Americas and Asia.

China leads world production, followed by California, Turkey and Iran. But until now, the evolution of walnuts has been unknown. Walnuts have a rich fossil record, which suggest an origin of walnuts and initial divergence into black walnuts and butternuts (white walnuts) in North America, some 35-45 million years ago. With this high age, both walnut lineages would have had ample opportunity to migrate into the Old World via the Bering and North Atlantic land bridges, yet only butternuts have been detected in the fossil records of Europe and Asia, and no ancient fossils of the Persian walnut are known.

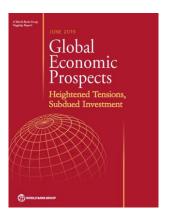
Using genomic data analyzed with phylogenetic and population genetic approaches, researchers have now cracked this mystery, showing that the Persian walnut is the result of hybridization between two long-extinct species around 3.45 million years ago.

منابع:

https://www.sciencedaily.com/releases/2019/06/190604172648.htm

https://academic.oup.com/mbe/advance-article-abstract/doi/10.1093/molbev/msz112/5488197

شماره ۴۵ – اردیبهشت ۱۳۹۸


مرکز ملی مطالعات راهبردی کشاورزی و آب

معرفی کتاب همراه با لینک دانلود

1. Global Economic Prospects, June 2019

Abstract:

Global growth has continued to soften this year. A modest recovery in emerging market and developing economies continues to be constrained by subdued investment, which is dampening prospects and impeding progress toward achieving critical development goals. Downside risks to the outlook remain elevated, and policymakers continue to face major challenges to boost resilience and foster long-term growth. In addition to discussing global and regional economic developments and prospects, this edition of Global Economic Prospects includes analytical essays on the benefits and risks of government borrowing, recent investment weakness in emerging market and developing economies, the pass-through of currency depreciations to inflation, and the evolution of growth in low-income countries. Global Economic Prospects is a

World Bank Group Flagship Report that examines global economic developments and prospects, with a special focus on emerging market and developing economies, on a semiannual basis (in January and June).

Year of publication: 2019 Publisher: worldbank

Pages: 182 pp

Download: https://openknowledge.worldbank.org/bitstream/handle/10986/31655/9781464813986.pdf

2. State and Trends of Carbon Pricing 2019

Abstract:

This report provides an up-to-date overview of existing and emerging carbon pricing instruments around the world, including international, national and subnational initiatives. It also investigates trends surrounding the development and implementation of carbon pricing instruments and how they could accelerate the delivery of long-term mitigation goals. This edition also discusses the relation between policies that put an explicit price on carbon and policies that put an implicit price on carbon.

Year of publication: 2019 **Publisher:** worldbank

Pages: 72 pp

Download: https://openknowledge.worldbank.org/bitstream/handle/10986/31755/9781464814358.pdf

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

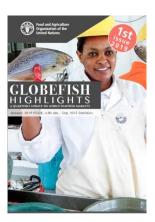
3. Soil Erosion

Abstract:

Despite almost a century of research and extension efforts, soil erosion by water, wind and tillage continues to be the greatest threat to soil health and soil ecosystem services in many regions of the world. Our understanding of the physical processes of erosion and the controls on those processes has been firmly established. Nevertheless, some elements remain controversial.

It is often these controversial questions that hamper efforts to implement sound erosion control measures in many areas of the world. Regional and global estimates of soil loss rates due to erosion differ substantially depending on the method used to derive them. Generally, estimates of mean annual soil loss from field plots are substantially higher (8 to almost 50 t ha-1 yr-1) than those from regional and global models (2 to 4 t ha-1 yr-1).

Year of publication: 2019


Publisher: FAO **Pages:** 104 pp

Download: http://www.fao.org/3/ca4395en/ca4395en.pdf

4. GLOBEFISH Highlights

Abstract:

GLOBEFISH forms part of the Products, Trade and Marketing Branch of the FAO Fisheries and Aquaculture Department and is part of the FISH INFOnetwork. It collects information from the main market areas in developed countries for the benefit of the world's producers and exporters. Part of its services is an electronic databank and the distribution of information through the European Fish Price Report, the GLOBEFISH Highlights, the GLOBEFISH Research Programme and the Commodity Updates. The GLOBEFISH Highlights is based on information available in the databank, supplemented by market information from industry correspondents and from six regional services which form the FISH INFOnetwork: INFOFISH (Asia and the Pacific), INFOPESCA (Latin America and the Caribbean), INFOPECHE (Africa), INFOSAMAK (Arab countries), EUROFISH (Central and Eastern Europe) and INFOYU (China).

Year of publication: 2019

Publisher: FAO **Pages:** 72 pp

Download: http://www.fao.org/3/ca4185en.pdf

شماره ۴۵ – اردیبهشت ۱۳۹۸

مرکز ملی مطالعات راهبردی کشاورزی و آب

5. Guidelines to the classical biological control of insect pests in planted and natural forests

Abstract:

Insect pests damage millions of hectares of forest worldwide each year. Moreover, the extent of such damage is increasing as international trade grows, facilitating the spread of insect pests, and as the impacts of climate change become more evident. Globally, and especially in developing economies, outbreaks of forest pests can have major consequences for the livelihoods of forest-dependent communities. FAO views the threat posed by forest insect pests very seriously. Pest management is an important element of Sustainable Development Goal 15 ("Life on Land"), especially target 15.8: "By 2020, introduce measures to prevent the introduction and significantly reduce the impact of invasive alien species on land and water ecosystems and control or eradicate the priority species".

Year of publication: 2019

Publisher: FAO **Pages:** 113 pp

Download: http://www.fao.org/3/ca3677en/ca3677en.pdf

ر کست به فهرست