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Summary

Plant phenotyping forms the core of crop breeding, allowing breeders to build on
physiological traits and mechanistic science to inform their selection of material for crossing
and genetic gain. Recent rapid progress in high throughput techniques based on machine
vision, robotics and computing (Plant Phenomics) enables crop physiologists and breeders
to quantitatively measure complex and previously intractable traits. By combining these
techniques with affordable genomic sequencing and genotyping, machine learning and
genome selection approaches, breeders have an opportunity to make rapid genetic
progress. This review focusses on how field based plant phenomics can enable next
generation physiological breeding in cereal crops for traits related to radiation use efficiency,
photosynthesis and crop biomass. These traits have previously been regarded as difficult
and laborious to measure but have recently become a focus as cereal breeders find genetic
progress from “Green Revolution” traits such as harvest index become exhausted.
Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, chlorophyll
fluorescence and machine learning are discussed using wheat and sorghum phenotyping as
case studies. A vision of how crop genomics and high-throughput phenotyping could enable
the next generation of crop research and breeding is presented.
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|. Introduction: phenotyping for trait-based
crop breeding

Phenotyping has been at the heart of plant breeding since the domestication of crops
thousands of years ago. The terms “phenotype” and “genotype” were coined more than a
century ago (reviewd in Walter et al., 2015) and highly heritable phenotypes are the basis for
modern crop breeding. The skilled eye of the crop breeder has enabled early-generation
selection of material for crossing based on both elimination of “defects” (such as disease
susceptibility and inferior agronomic qualities) and maximisation of yield across multiple
environments and seasons (Donald, 1968). Subsequent crossing of the “best with the best”
has been a successful strategy in the past, however, understanding of the component
processes or genes underpinning the yield advantage was often lacking. A more mechanistic
approach, which is now commonly used in cereal breeding is “ideotype” breeding. This
breeding philosophy has more recently referred to as “physiological breeding” since it has
become more technologically tractable to phenotype genetically complex quantitative
physiological traits rather than simple visible phenotypes such as grain number and weight
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(Reynolds & Langridge, 2016). This approach requires construction of a “model” or ideal
plant with attributes combined to maximise yield and has been used extensively in cereal
breeding; first in wheat (Donald, 1968) and rice (Yoshida & Parao, 1972; Peng et al., 2008).
The advantage of a trait-based approach is that the heritability of a yield component may be
much higher than that of yield itself, thus maximising genetic gain over that achievable with
selection for yield alone. The limitation of this approach is, of course, whether our model we
are breeding toward is the appropriate one. For example, Donald (1968) proposed an
ideotype for wheat, which has become a paradigm for wheat breeding in Australia,
containing a number of attributes based on the relationship between these traits and yield in
relevant environments and our knowledge of the physiology of the crop. A cartoon
representing the elements of such a wheat ideotype is shown in Fig.1.

With the addition of responsiveness to inputs such as water and fertiliser and resistance to
common foliar diseases, Borlaug’s semi-dwarfed wheats and the short-statured rice varieties
that led to the Green Revolution and saved millions of human lives, were the first examples
of these ideotypes (Borlaug, 1968). Donald also introduced the term “harvest index”; the
proportion of the plant biomass partitioned to harvestable grain, which has become a major
morphological driver of cereal yields since the 1960s (Fischer et al., 2014).

While still surprisingly relevant today, whether the component traits of this ideotype will
deliver in future breeding scenarios is debatable. Firstly, at least in our major cereal crops,
we appear to have reached an asymptote in harvest index achieved primarily through
adoption of dwarfing genes and hence traits that target biomass itself, such as
photosynthetic efficiency, have become major breeding targets (Foulkes et al., 2011; Parry
et al., 2011). Secondly, due to elevated atmospheric CO, levels, increased frequencies of
heat and drought events, desirable traits of an ideotype may change. For example, free-
tillering, tall wheat tends to yield better under elevated CO; (Zhu et al., 2012).

In many dry-land production areas, attributes that maximise the productive use of water are
becoming more important (Ludlow & Muchow, 1990; Richards, 2006; Richards et al., 2010).
This increased focus on breeding for water-limited environments is already evident in
sorghum, which is the world’s fifth most important cereal and also a significant summer crop
in north-eastern Australia. Sorghum is a C, crop and known for its drought adaptation. A
recent study has shown that yield advances in sorghum are 2.5 times more in dry years than
in wet years (Potgieter et al., 2016).

Generally, annual genetic gain in our major cereal crops is currently in the range of 0.5 to
1%; clearly not sufficient to meet future global demands of a burgeoning population (Fischer
et al., 2014). If we assume that physiological breeding will play a key part in future efforts to
remedy this stagnation in yield progress, what is required to fuel the engine of this selection
process?

Two major technologies underpinning crop breeding have advanced exponentially in
capability since the work of Donald: crop genomics and phenomics. A flowchart of how
these two fields of research can contribute to crop breeding and accelerate genetic gain is
shown in Figure 2. We have seen a revolution in our capacity to produce high-density
genetic maps of breeding populations for marker-assisted selection (MAS; (Langridge &
Reynolds, 2015)) now commonly used in cereal breeding programs, particularly for genes of
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major effect such as flowering time, height and disease resistance. However, many other
agronomically important traits typically have more complicated genetic architecture and are
often governed by quantitative trait loci (QTL) that may be population specific, or made up of
multiple QTL of minor effects, particularly in the case of QTL derived from genome-wide
association studies (GWAS) of large diversity sets developed to introgress novel germplasm
into breeding programs (see Langridge & Reynolds, 2015; Reynolds & Langridge, 2016).

More recently though, so-called next-gen sequencing (NGS), which has revolutionised the
study of genomics has made high-throughput whole-genome sequencing possible and
affordable for many breeding programs. Genome-wide selection is now becoming a widely
adopted tool in crop breeding and is particularly successful when applied to trait-based
breeding matched to target environments using agronomic models or physiological
experiments (Cooper et al., 2014). Genomic selection models attempt to produce a barcode
of single nucleotide polymorphisms (SNPs) generated from high-density sequence-based
marker information (GBS), SNP arrays (Gene chips) or genome re-sequence information
matched to high-value traits for a target environment (or in its bluntest application, yield
itself). A genome selection statistical model in its purest form, once developed and validated
against yield data across many sites and seasons, can be used to increase genetic gain
without subsequent phenotyping or high-throughput phenomics but in reality, combining both
genomics and phenomics in the workflow is most valuable (Crossa et al., 2017; Montesinos-
Loépez et al., 2017). To develop a genome selection model to determine the predicted
breeding value of an individual in a cross, a “training set” must be developed, which links
patterns of SNPs to the traits of interest. High-throughput phenomics is crucial at this step to
develop a robust model across target environments. The statistical model is then “tested” on
an uncharacterised population and the allelic variation identified in the model validated. This
approach is very similar to machine learning-based phenomics approaches, which will be
described below (see Cooper et al., 2014; Singh et al., 2016; Crossa et al., 2017;
Montesinos-LoOpez et al., 2017; Silva-Perez et al., 2018).

While this combined genomics and phenomics approach can be used to accelerate genetic
gain in a breeding system, it can also be used to identify valuable new trait / SNP
relationships in germplasm diversity sets and the identified allelic variation can then be
checked for in breeding populations or introgressed through crossing or by genome
engineering (Bortesi & Fischer, 2015). With the rapid advancement of sequencing
technologies, synthetic biology and genome engineering, high-throughput, non-destructive
plant phenomics must match the pace of these developments to maximise our ability to meet
the demands of global food consumption. While mass parallelisation of sequencing reactions
- as first achieved by Life Sciences’ 454 next-gen sequencing machine - was at the heart of
this paradigm shift in genomics (Koboldt et al., 2013; Heather & Chain, 2016), miniaturisation
and increased affordability of sensors, and importantly, of geo-positioning systems (GPS)
with centimetre rather than metre accuracy, has opened the doors for the development of
high-throughput phenotyping techniques that are necessary to rapidly assess thousands of
breeders’ plots in field trials. In the sections below we discuss the recent application of field-
based phenomics technologies to trait-based pre-breeding and breeding in grain crops,
focusing on the globally important cereals wheat and sorghum. A vision for the future of in-
silico breeding is outlined. Key cereal traits contributing to yield formation are summarised in
Table 1, together with their primary effect contributing to yield and the respective sensor
technology used for phenotyping.

This article is protected by copyright. All rights reserved.



ll. Biomass, radiation use efficiency and
photosynthesis: new frontiers in crop breeding

As alluded to in the introduction, improvements to harvest index are becoming increasingly
harder to achieve as we approach a biological limit in our major cereal crops (Fischer et al.,
2014). Yield improvements therefore will have to come from more efficient biomass
accumulation in response to greater sink strength and in many cases, such as under water-
limited conditions, increased biomass (and yield) per unit of water used. At the basis of
biomass accumulation is crop photosynthetic capacity and the efficiency with which plants
use light for growth for a given set of inputs. At the leaf level, screening for genetic variation
in photosynthetic traits using traditional methods such as gas exchange are time-consuming
(even single point measurements of assimilation can take up to 20 minutes for a stable
value) and are highly sensitive to crop water status (see Silva-Pérez et al., 2017). There are
also several issues with scaling leaf-level data to the canopy as photosynthetic performance
of leaves at different positions in the canopy can vary. However, assimilation chambers have
been used to measure canopy apparent photosynthesis in wheat, demonstrating that the
genotypes with greater canopy photosynthesis at single time points during the growth period
had greater leaf chlorophyll (as measured by SPAD) and were also higher yielding (Tang et
al., 2015; Tang et al., 2017). Nevertheless, it is likely that “whole-of-life-cycle” canopy
photosynthesis may be more relevant to final yield (Murchie et al., 2018), which would
include photosynthate stored in stems pre-flowering and remobilized to the grain during grain
filling (Blum, 1998), photosynthesis in organs such as spikes or other floral parts (Sanchez-
Bragado et al., 2016), and the persistence of green leaf photosynthetic area later in grain
filling; a trait known as “functional stay-green”, which occurs in wheat (Christopher et al.,
2016; Rebetzke et al., 2016). To screen for differences in photosynthetic capacity at the
canopy level, such contributions to photosynthesis have to be integrated over time. Crop
physiologists commonly do this by dividing the amount of biomass accumulated by a crop (in
the absence of abiotic and biotic stresses) by the amount of radiation intercepted by the
canopy over a certain period of time. This ratio is termed canopy radiation use efficiency
(RUE) and is usually measured in g MJ™. As RUE represents the sum of a number of sub-
traits related to photosynthetic performance, it is often quite grossly estimated at maturity
with many assumptions by dividing final biomass by total light absorbed during the growing
season. Given the challenges of measuring leaf or canopy photosynthetic capacity rapidly on
many hundreds or thousands of germplasm entries, it is not surprising that these traits have
failed to be a major focus of cereal breeding programs (Murchie et al., 2018). However, there
have recently been considerable advances in high-throughput estimation of photosynthetic
and biomass-related traits at the leaf and canopy level, which make them more tractable.

1 Leaf estimation of photosynthesis-related traits

While measuring leaf photosynthetic properties across genotypes using traditional gas
exchange is not practical, a number of optical techniques can provide surrogate
measurements in high throughput. Prediction of a range of agronomic traits and crop
chemical components through measurements of radiation reflected from crop leaves and
canopies is well established and gaining in popularity for plant phenomics. Reflectance in the
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visible to near-infrared part of the electromagnetic spectrum has been related to a range of
photosynthesis-related traits such as pigment concentration (xanthophylls, chlorophylls,
carotenoids) and also water content of plants, and the red-edge in the derivative of
reflectance is commonly used to extract these parameters (Pefiuelas & Filella, 1998). The
SPAD chlorophyll meter is a widely used optical instrument, which measures the
transmittance of red light (560 nm) through the leaf and normalised to infrared (940nm) light
transmission to predict leaf chlorophyll content (Benedict & Swidler, 1961). Such “indices”
based on wavelengths in the visible and infrared part of the electromagnetic spectrum have
long been used in remote sensing to predict vegetation biomass, biochemical leaf
components and some physiological traits. A widely used example of this approach is the
normalised difference vegetation index (NDVI), which uses reflected red and near-infrared
wavelengths to estimate relative greenness, canopy ground cover, senescence, biomass
and chlorophyll content (Tucker, 1979; Gamon et al., 1995; Pinto et al., 2016). Also, the
photochemical reflectance index at 531 and 570 nm (PRI) has often been used to estimate
photosynthetic traits and photoprotective pigment pools in leaves (Gamon et al., 1992).

The indices described above are derived from LED/filter/photodiode combinations restricted
to the wavelengths of light determined by the filter sets. However, visible / near-infrared
spectrometers and full-range visible, NIR, SWIR spectrometers are now available from a
range of manufacturers and are often attached to a leaf clip with a light source incorporated.
Such spectrometers permit rapid collection of not just two or 3 wavelengths of reflectance
data but reflected light across many hundreds or even thousands of wavelengths. Recent
advances in computational processor speeds and artificial intelligence/machine learning
algorithms mean that the entire spectral data set can be analysed and used for statistical
prediction of photosynthesis-related traits. By generating a “training set” of statistical
correlations between every wavelength of reflected light from a leaf or canopy and the trait of
interest, predictive models have been derived for photosynthesis related traits. Leaf nitrogen,
leaf mass per area and photosynthetic traits in plants ranging from trees to both C; and C,4
annual crops can be derived in around 20 seconds per leaf measurement (Serbin et al.,
2012; Ainsworth et al., 2014; Singh et al., 2015; Yang et al., 2016; Dechant et al., 2017;
Yendrek et al., 2017; Silva-Perez et al., 2018). Silva Perez et al. (Silva-Perez et al., 2018)
derived such algorithms using partial least squares regression analysis for wheat leaf
nitrogen content, the modelled photosynthetic parameters V¢yax (@n indicator of Rubisco
amount and photosynthetic capacity) and J (chloroplast electron transport capacity) (Von
Caemmerer, 2000) in addition to leaf mass per area. These models allow photosynthetic
variation to be examined in the field in many hundreds or even thousands of diverse crop
genotypes, potentially making photosynthesis a tractable breeding target. In wheat, this is
enabling large-scale screening of germplasm resources and combined with genotype by
sequence data, mapping of alleles underpinning this diversity in photosynthetic performance
(http:/fiwyp.org/funded-projects/ ).

There are several obstacles to the widespread use of a machine learning approach to
extract trait-based information for breeding. First, generation of the initial “training set” to
develop the model requires a large number of validation measurements using the older,
slower traditional measurement systems (many hundreds or even thousands of
measurements may be required, depending on the dimensionality of the trait surrogate; for
example, in the case of leaf reflectance, the number of wavelengths measured). If sufficiently
large training sets are not developed, spurious “over-fitting” occurs and the predictive power
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of models is diminished (see Heckmann et al 2017). Another equally important issue is the
applicability of predictive models across genotypes, tissue types and environments. In the
case of Silva-Perez et al (2018), leaf reflectance models for photosynthetic parameters in
wheat were robust across Australian and Mexican field conditions and across field versus
glasshouse-grown plants, and other studies have shown that such models can even predict
across species boundaries (Heckmann et al. 2017). As with most machine learning
approaches, the larger and more diverse the training set, the more likely the model is to
predict when applied to other unknown samples, which the model has not “seen” before.

A high-throughput alternative to gas exchange for photosynthetic screening, is to monitor
chlorophyll fluorescence which is a direct measure of photosynthetic capacity, rather than a
statistical model (reviewed in Maxwell & Johnson, 2000; Murchie & Lawson, 2013). Since
the mid 1980’s, commercial “leaf clip” pulse amplitude modulated chlorophyll fluorescence
(PAM) systems have been commercially available to provide not only steady- state
chlorophyll fluorescence measurements at a given actinic light intensity, but by applying a
brief saturating flash of light, allow calculation of photosynthetic electron transport rate (ETR
or J), intrinsic light harvesting efficiency (estimated from the fluorescence parameter dark
adapted Fv/Fm) and NPQ (non-photochemical quenching such as dissipation of energy as
heat) (Maxwell & Johnson, 2000). Small, affordable, handheld PAM and similar devices that
are now available (Cessna et al., 2010; Kuhlgert et al., 2016) make high-throughput
screening for electron transport related traits possible in the field. However, QTL mapping in
field crops has so far mostly used genetic variation in dark-adapted Fv/Fm for abiotic stress
tolerance mapping (Sharma et al., 2017). It is difficult to scale chlorophyll fluorescence
imaging to a remote sensing platform due to the difficulty of applying a uniform, high intensity
saturating flash across a canopy. However, recent advances in using Laser Induced
Fluorescence Transient (LIFT) techniques to de-convolute components of fluorescence
guenching remotely offer the promise of canopy-level estimates of ETR and NPQ (Raesch et
al. 2014). Furthermore, various retrieval techniques (theoretical and empirical) and sensing
(index based) approaches exist to remotely detect solar-induced fluorescence (SIF) across
large fields (Meroni et al., 2009).

2 Estimation of photosynthetic traits, biomass and radiation use
efficiency at the canopy level

While leaf-level measurements provide relative high-throughput methods for screening field
crop germplasm, they are restricted to collecting data on one leaf at a time in isolation from
the behaviour of the crop canopy as a whole. A given “leaf class” (e.g. flag leaf or
penultimate leaf) is chosen for analysis and often at a particular developmental stage (e.g.
tillering, booting, anthesis or grainfill), which is easily recognised and normalised across
diverse material (e.g. the leaf hyperspectral work of Silva-Perez et al., 2018). However,
scaling these observations to the canopy level is not trivial. Even if total green leaf area
could be estimated using high-throughput alternatives (Liu et al., 2017; Potgieter et al.,
2017), leaf age affecting photosynthetic capacity or light interception in the different layers of
the canopy profile will play a crucial role when integrating leaf-level photosynthetic traits at
the canopy scale.
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To understand the genetic architecture of a complex trait such as biomass accumulation or
RUE, a more comprehensive analysis of the canopy as a whole, over a range of
developmental stages is desirable. This can be achieved by ground-based proximal remote
sensing using phenomobiles (Deery et al., 2014; Liu et al., 2017; Madec et al., 2017; Salas
Fernandez et al., 2017; Jimenez-Berni et al., 2018) or fixed platforms (Kirchgessner et al.,
2017; Virlet et al., 2017), and aerial imaging, both manned and UAV (Aasen et al., 2015;
Gonzalez-Dugo et al., 2015; Deery et al., 2016; Yang et al., 2017) using a range of devices
similar in principle to those deployed at the leaf level but in most cases based on imaging
sensors.

Several instruments are now commercially available for multispectral sensing whereby data
are collected from discrete wavelengths. Such sensors work in either active mode (a light
source is provided), such as Greenseeker and Crop Circle (Govaerts & Verhulst, 2010;
Shaver et al., 2011) or passive mode (relying on the ambient light), where options include
single point sensors (Balzarolo et al., 2011) and imaging sensors (see review by Yang et al.,
2017). In contrast, hyperspectral sensors collect hundreds or thousands of continuous bands
across the whole spectrum. The ASD FieldSpec (Malvern Panalytical, The Netherlands) is a
commonly used hyperspectral sensor for single point spectral measurements at the canopy
level (Tilling et al., 2007; Botha et al., 2010; Gnyp et al., 2014; Kaur et al., 2015; Singh et al.,
2017a; Yendrek et al., 2017). However, as hyperspectral cameras are becoming
miniaturised and more affordable, they are becoming a viable alternative to the point
spectrometers that can be mounted on ground- (Busemeyer et al., 2013; Deery et al., 2014;
Virlet et al., 2017) and aerial phenotyping platforms (Gonzalez-Dugo et al., 2015; Habib et
al., 2016). Recent examples have demonstrated the potential of hyperspectral imaging for
estimating nitrogen content in maize and wheat (Vigneau et al., 2011; Gabriel et al., 2017,
Singh et al., 2017a; Camino et al., 2018). However, the workflow of imaging spectroscopy
presents some challenges (Aasen et al., 2018) such as the radiometric correction required to
turn images into reflectance or the geometric corrections required to obtain georeferenced
images. However, recent advances in ground-based imaging spectroscopy (Underwood et
al., 2017; Wendel & Underwood, 2017b; Wendel & Underwood, 2017a) present an
opportunity for implementing novel algorithms for phenotyping photosynthesis-based traits
using hyperspectral sensing at the canopy level.

Canopy reflectance has successfully been used to estimate leaf N concentration in two
Sweet Sorghum cultivars (Singh et al., 2017b) and leaf N is usually correlated with RUE in
Cs and C, crops, however, especially in C, this relationship reaches a plateau where growth
is light limited (Sinclair & Horie, 1989). Therefore, to detect differences in canopy RUE of
genotypes grown under high N conditions, such as in a breeding trial, estimates of biomass
and accumulated canopy light interception are needed.

Recent attempts to estimate above-ground biomass in the phenomics context include the
use of LIDAR (Eitel et al., 2014; Jimenez-Berni et al., 2018) or 3D canopy reconstruction

from ground cameras (Salas Fernandez et al., 2017), as well as aerial surveys combining
crop height and multispectral imagery (Bendig et al., 2015; Tilly et al., 2015a; Yue et al.,

2017; Zhang et al., 2017; Li et al., 2018). By combining spectral reflectance with manually
measured traits, such as stem diameter, biomass predictions could be improved in maize
(Varela et al., 2017). However, these methods, based on volumetric estimates of biomass
still require crop-specific calibration or parameters that depend on the crop developmental
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stage (Tilly et al., 2015b; Jimenez-Berni et al., 2018). The use of combined new technologies
such as aerial radar in combination with Lidar (Kaasalainen et al., 2015) and combining
machine learning algorithms and crop growth models (Liu et al., 2017) could improve these
estimates in the future.

Another important attribute required for estimating RUE is light intercepted by the canopy,
which traditionally is measured with methodologies based on light interception using
ceptometers, canopy analysers or hemispheric photography. However, measuring light
interception with these tools can be time-consuming and there are constraints regarding the
time of the day or light conditions at which these measurements can be performed. Other
methodologies based on indirect estimates of light interception such as canopy ground cover
are becoming very popular and new tools available for measuring ground cover with mobile
phones can speed up light interception measurements (Shepherd et al., 2018)

Fractional ground cover - as a surrogate for canopy light interception - has successfully been
estimated for a maize crop planted at two different populations using Red Green Blue (RGB)
cameras fitted with filters that rendered them sensitive to wavelengths in the
photosynthetically active radiation (PAR) range mounted on UAVs (Tewes & Schellberg,
2018). The authors then combined the interception estimates with incident radiation from a
weather station to calculate accumulated radiation and by plotting that against biomass from
manual cuts at different intervals, they derived RUE at different stages of crop growth.

Similarly, multispectral cameras, such as the RedEdge (MicaSense, Seattle, USA) are
specifically designed to augment the red green blue bands with rededge and near-infrared,
and are light enough to be carried on UAVs. They can be used to estimate canopy NDVI,
which has been significantly correlated with traits relating to seasonal leaf area dynamics in
sorghum (Potgieter et al., 2017).

However, these methodologies cannot account for the canopy structure or estimate how
much light is intercepted at different times of the day. New methodologies based on a
combination of LIDAR and 3D modelling of the canopy (Perez et al., 2018) have been used
to accurately estimate light interception accumulated over time in different genotypes of palm
trees (Perez et al., 2018). A similar approach can be applied in annual crops and the
combination of LIDAR and 3D modelling has also been used in wheat for estimating green
area index (Liu et al., 2017). LIDAR can provide very valuable information about the vertical
distribution of light interception within the canopy, which combined with the photosynthetic
capacity (Rebetzke et al., 2016) and 3D models for simulating light penetration and light
interception at different heights throughout the canopy and at different times of the day
(Figure 3). Repeated measurement of LIDAR throughout crop development can potentially
provide a much more accurate estimation of RUE and reveal subtle genotypic differences.
The different shapes of the profiles can also be used as features in machine learning
algorithms (Zhao et al., 2011; Jin et al., 2018) to predict complex physiological traits related
to RUE and eventually map genetic regions related to these traits.

Combining ground-based platforms and aerial platforms for phenotyping offers flexibility, for
example if the ground is too wet to be accessible via a phenomobile measurements can still
be taken by UAVs and if UAVs cannot be used measurements can be taken with the ground
vehicle. Integrating outputs from various platforms and many different sensor types further
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offers the opportunity to design analysis pipelines around specific target traits. Such a
platform (Figure 4) in combination with a UAV-based platform is currently being used to
target complex traits such as growth (Potgieter, AB et al., 2018) and RUE in sorghum (B.
George-Jaeggli and A. Potgieter, unpublished).

Outputs from all of the sensors from the ground-based and aerial platform are streamlined in
a custom-designed analysis pipeline and algorithms are developed by constructing
multivariate statistical models for each target trait much in the same way as for leaf-level
traits. Each model is initially fit on a training data set with parameters measured manually on
a subset of the field plots. Both the raw data and results of processing are stored on a cloud-
based storage infrastructure, which provides data redundancy across sites, and fast access
to both the raw data and a custom web server. This also enables future re-analysis of
previously gathered field data as new algorithms and research questions arise and
leverages the initial costs of expensive field trials.

If RUE shows useful heritability, meaning the variation due to genetic factors (characterised
via SNPs) is greater than the variation due to environmental factors or measurement error,
the genetic loci and potentially candidate genes contributing to canopy photosynthetic
capacity may be identified via Genome Wide Association Studies (GWAS) and the trait can
be selected for in the sorghum breeding program (see Fig 2). Learnings from sorghum may
then transfer to other cereals via sequence homology. A better understanding of the
variability and genetic basis of RUE can also be used to parameterise sophisticated crop
models such as APSIM (Holzworth et al., 2014), which predict genotype performance in
various environments and under different agronomic management (GXExM simulations)
(Chapman, 2008; Hammer et al., 2010; Chenu et al., 2017; Messina et al., 2018). Together,
genomics and phenomics and crop modelling are potentially powerful tools for the breeding
program to select lines with increased growth capacity adapted to various production
environments. Nevertheless, there is evidence that conventional breeding has increased
RUE along with grain yield (Shearman et al., 2005; Sadras & Lawson, 2011; Sadras et al.,
2012). However, progress is not universal and, in some examples, improvement in RUE and
grain yield has in fact slowed (Aisawi et al., 2015; Flohr et al., 2018). Thus, genomics and
phenomics enabling tools can potentially augment current efforts in conventional plant
breeding to improve cereal yield potential even in the face of climate change.

lll. Photosynthesis, stomatal conductance and
canopy temperature

Stomatal conductance (gs) is defined as the rate of carbon dioxide entering or water vapor
exiting through the leaf stomata. The particular importance of gs for crop improvement, more
so in C3 crop species, is evidenced through the many studies showing a concomitant
increase in gs with higher yields (Roche, 2015): achieved through conventional plant
breeding. Herein, particular attention is granted to gs in C; species because of their
dependence of photosynthetic gas exchange on gs, whereby the two are often highly
correlated (Farquhar & Sharkey, 1982; Fischer et al., 1998; Gago et al., 2016). Due to their
carbon dioxide concentrating mechanism, C, species are not limited by gs in the same way
as C; species (von Caemmerer & Furbank, 2003; Osborne & Sack, 2012). However, similar
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studies reporting on the link between gs and yield also exist for some C, crops (Bashayake
et al., 2016). In the context of improving photosynthetic performance of C; crops under both
high-yield and water- limited conditions, gs and canopy conductance to water and CO; is of
great importance Thus, surrogate measures of gs that enable sampling of many lines in a
short time potentially have high utility for plant breeding.

Canopy temperature (CT) is a well-established surrogate measure of gs (Blum et al., 1982;
Smith et al., 1988; Amani et al., 1996; Fischer et al., 1998; Jones & Vaughan, 2010;
Rebetzke et al., 2013) and its application in field phenotyping of crops dates back to the
1960s (Fuchs & Tanner, 1966). The principle underlying the effectiveness of CT is akin to
evaporative cooling: surfaces within the plant canopy are cooled by evaporation, so that their
temperature decreases in proportion to the evaporation rate. Therefore, stomatal opening
and higher transpiration rates manifest with cooler CT, while warmer CT is symptomatic of
stomatal closure and lower transpiration rates (Jones, 2004). This relationship has been
exploited to great effect at the International Maize and Wheat Improvement Center
(CIMMYT), where studies reporting the association between cooler CT and grain yield are
ubiquitous (Reynolds et al., 1994; Amani et al., 1996; Fischer et al., 1998; Ayeneh et al.,
2002; Aisawi et al., 2015; Rutkoski et al., 2016). Although these studies typically relate CT
directly to yield via greater stomatal conductance under yield potential studies, an alternative
scenario arises under water limitation: whereby cooler CT during grain-filling has been linked
to greater rooting depth, water use and yield (Lopes & Reynolds, 2010). Other studies on
wheat (Blum et al., 1989; Rashid et al., 1999; Olivares-Villegas et al., 2007) and sugarcane
grown under water limitation (Basnayake et al., 2015) have also shown an association
between cooler CT and yield, further highlighting the utility of CT phenotyping. In summary,
the use of CT as an effective phenotype for gs is underscored by the multiple studies relating
historical yield progress with increased gs (Roche, 2015): where plant breeders have
unintentionally increased gs in the quest for greater yields. While these studies highlight the
commendable progress of conventional plant breeding, they also illustrate the opportunity for
indirect selection for yield in early generations using CT as a surrogate measure of g
(Fischer & Rebetzke, 2018).

Recent technology advances in thermal imaging and data processing have greatly increased
the efficacy of CT field phenotyping. For example, thermal cameras fitted to manned aircraft
(Figure 5(a) and (b)) together with data processing systems are now used to measure CT on
hundreds of experimental plots in a few seconds at a spatial resolution of 100 to 200 pixels
per square metre (Deery et al., 2016; Rutkoski et al., 2016). As these airborne CT systems
acquire a near-simultaneous measurement on all the plots in a given experiment, the
confounding effects of changes in local weather conditions are mitigated. By measuring CT
on all plots within an experiment at essentially the same time, the statistical analyses need
only account for the spatial variation in CT through the experimental design (Gilmour et al.,
1997) and the need to account for time-of-measurement effects is avoided. Thus, the use of
airborne thermography has greatly increased the repeatability of CT, with reported broad-
sense heritability estimates typically ranging from 0.5 to 0.9 (Deery et al., 2016; Rutkoski et
al., 2016). In these studies, the sensor payload comprising a high-precision thermal camera
carried on a manned aircraft, with less than 0.05°C pixel-to-pixel sensitivity, is typically too
heavy for a conventional UAV. Therefore, although there are many examples of thermal
image acquisition with UAVs (Sullivan et al., 2007; Berni, J. A. J. et al., 2009; Berni, Jose A.
J. et al., 2009; Zarco-Tejada et al., 2012; Chapman et al., 2014; Basnayake et al., 2016;

This article is protected by copyright. All rights reserved.



Gdmez-Candon et al., 2016), their effectiveness for quantifying repeatable CT differences
between genotypes remains unclear and to the best of our knowledge, no study has
reported high estimates of CT repeatability or heritability from a UAV.

Although many studies have shown that CT measurements alone are a useful enabling tool
for discriminating amongst genotypes, additional measurements, including local
micrometeorological data and in particular net radiation, are required to estimate absolute
evaporation rates and hence the pattern of crop water use (Jones, 2004; Leinonen et al.,
2006; Berni, J. A. J. et al., 2009; Jones & Vaughan, 2010). The possibility also exists for the
use of reference surfaces that mimic the aerodynamic and radiative properties of the canopy
and thereby reduce the need for net radiation measurements (Jones et al., 2018). Such an
application is possibly more suited to continuous CT measurements. Wireless sensor
networks where sensors record CT values continuously and every few minutes report these
to a base station via a radio-frequency transmitter have commonly been used for irrigation
management in field crops (http://www.smartfield.com/smartfield-
products/equipment/smartcrop-system/). The ArduCrop wireless sensor network CT
measurement system (Rebetzke et al., 2016; Jones et al., 2018) developed at CSIRO, is
shown in Figure 5(c) and an example time-course across two days for three elite wheat
varieties is shown in Figure 5(d). These technologies present the opportunity to remotely
assess the pattern of crop water use across multiple environments, perhaps more effectively
than using buried soil moisture sensors. Thus, the potential to non-destructively estimate
crop water use together with the capacity to remotely sense biomass and leaf area
development presents the opportunity to better understand the physiological basis of high-
performing elite lines grown under water limitation and thereby inform research and breeding
efforts.

I\VV. Turning data into knowledge

Crop breeding in the ‘omic era is a multidisciplinary and “big data” challenge involving high-
density genomics data combined with phenotyping data from replicated experiments in
multiple environments. The activities of data processing, statistical inference and making
reliable predictions to inform selection must scale to many thousands, if not millions, of
individuals if they are to be useful. This will likely require a multidisciplinary effort blending
non-traditional crop science capabilities, including remote sensing, software engineering,
statistical inference, machine learning and artificial intelligence, with traditional capabilities
like crop physiology, quantitative genetics and plant breeding. Published examples of the
successful deployment of field phenotyping within experiments have relied on a
multidisciplinary approach to develop dedicated data processing and statistical analysis
pipelines (Salehi et al., 2015; Deery et al., 2016; Rutkoski et al., 2016; Hu et al., 2018;
Jimenez-Berni et al., 2018; Potgieter, A et al., 2018) to segment large volumes of raw data
into individual phenotypes for analysis. The ever-increasing availability of scripting software
(e.g. Python (www.python.org) and R (www.r-project.org)) for data processing and analysis
should to some extent alleviate this challenge.

Interoperability of data sets and uniform, publicly accessible data processing pipelines are
essential to ensure utility of Phenomics data for researchers and breeders. Solutions
developed for individual Phenomics Centres or research groups can tend to be monolithic,
slowing uptake of technology and methodologies. While much of the work done in the
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commercial sector in the data analytics domain will remain inaccessible, publicly funded
activities are making analysis pipelines open and accessible via web portals. Examples of
this are the collaborative activities funded by the International Plant Phenotyping Network
(IPPN; https://www.plant-phenotyping.org/ ) and the PhenoSmart analytical platform of the
Australian Plant Phenomics Facility (https://www.phenosmart.org.au/ ).

V. The “Big Data” problem

Whole genome sequencing has recently become very affordable with the advent of high-
throughput Illlumina and now Nanopore sequencing technologies
(https://nanoporetech.com/how-it-works). Informatics solutions for storing, assembling,
annotating and searching sequence data have now become limiting. This problem is
multiplied many fold with plant phenomics data. The information “unit” of gene sequence is
limited to any combination of 4 base pairs for translation of gene sequence to protein, hence
putative functional identification by BLAST searching is tractable while in Plant Phenomics it
is not. One solution to this problem is “data reduction” or the distillation of phenotyping data
to known traits of interest and applying established statistical methods to map these traits to
the genotypic information, as described above. This may make data sets more tractable but
data reduction without retention of primary data sets may remove many of the complexities
in the data, which could potentially be very valuable, including for traits yet to be identified in
crop breeding. We then have a dilemma where on one hand we retain a vast body of raw
digital data and the traits or parameters derived from it, which could become just an
intractable, chaotic collection of data. On the other hand, we retain only processed
information, which is limited by our current capacity to “turn data into knowledge”, wherein
the capacity to use large-scale machine learning and statistics retrospectively is lost.

The technologies described above are essentially a modernisation and acceleration of
techniques breeders have used for centuries to establish the relationship between
phenotype and genotype and more recently incorporate into whole genome selection. The
challenge then is to provide a data storage and retrieval system, which makes sense to crop
breeders, physiologists, molecular geneticists and biochemists alike. Trait ontologies (e.g.
http://aims.fao.org/activity/blog/crop-ontology-harmonizing-semantics-phenotyping-and-
agronomy-data ) are necessary to enable cross referencing of the diversity of descriptions
used for a single trait or process. A cereal breeder interested in starch quality and dough
extensibility is unlikely to use the same terms for grain storage protein properties as a
researcher working on Arabidopsis functional genomics of seed development. Ontologies
must be dynamic, curated and agreed upon by the community.

Insufficient metadata descriptors have severely limited the utility of other classes of ‘omics
data sets and a variety of software solutions have been developed. For example, for gene
expression data, Hannemann et al. (2009) used an ontology driven approach where
metadata labels are attached to data using XML tags. In the case of large image-based plant
phenomics data sets, such solutions are only now becoming available. One such ontology
based approach to managing phenomics metadata and linked image data is PODD,
(Phenomics Ontology Driven Database; Ansell et al. 2013). European and international
programs have been recently launched to develop data standards and agreed metadata and
data formats for phenotyping information (eg. https://emphasis.plant-phenotyping.eu ) and
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the MIAPPE and ISA-TAB standards for Plant Phenotyping (Cwiek-Kupczynska et al. 2016).
It is evident, however, that a database linking phenotype and genotype across crops and
gene discovery in model plant species, which is accessible to crop breeders is still a way off.

V1. Conclusion: crop breeding for the future

The adoption of Plant Phenomics has been a global phenomenon over the last decade with
a burgeoning number of “Phenomics Centres” promising next-generation solutions to high-
throughput phenotyping for gene discovery and breeding. It is gratifying that discussions at
Plant Phenomics conferences have evolved from “how many plants can you pass through
your imaging system?” or “what is the payload of your drone?” to “what is the genetic
discrimination of that phenotyping pipeline for drought tolerance” or “how heritable is that
trait surrogate?”. Fit-for-purpose, affordable solutions for plant phenotyping will no doubt
have the greatest impact on crop breeding over the next decade. It is also worthy of note
that, while controlled environment, image-based phenotyping platforms have been gaining
popularity in almost every corner of the globe, the majority of crop breeding occurs in the
field with little if any selection in controlled environments.

What will breeding of our major cereal crops look like in the year 2050; the date when the
human population is predicted to reach 10 billion? Given the rapid pace with which
seguencing, phenotyping technologies, robotics and artificial intelligence are progressing, it
is hard to escape the conclusion that an “in-silico” breeding platform will result from these
advances. Agriculture has been oddly resistant to digital disruption until relatively recently
but adoption of “digital agriculture” in all its forms is now rapid and widespread (Walter et al.,
2017). Already, mining allelic diversity through genome sequence and high-resolution, high-
throughput phenotyping in combination with the use of crop models to predict trait value
(Keating et al., 2003) is not only “doable” but commercially proven in maize (Cooper et al.,
2014). We are currently amassing large sequenced or at least well genotyped collections of
diverse rice (Wang et al., 2018), wheat, sorghum (Mace et al., 2013) and maize accessions
(http://seedsofdiscovery.org/). Matching this wealth of allelic diversity to phenotypic data
could result in a massive atlas of material to be used in cereal pre-breeding and breeding.
The data fabric to enable crop breeders to utilise this wealth of information, however, is still a
work in progress.

One can envisage a very near future where a breeder may not only walk his trial plots
assessing germplasm using his “human spectrometer” but utilise the phenome / genome
atlas to refine genome selection models, guide selection of parents in crosses, or target a
new set of CRISPR-Cas constructs for genome engineering (Feng et al., 2017; Ricroch et
al., 2017).
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Tables

Table 1. Summary of traits amenable to field phenotyping and the primary effect contributing

to yield.
Trait Primary Effect Sensor Technology
Canopy structure
Height HI/WUE/RUE LiDAR, 2D and 3D RGB photogrammetry
Fraction of canopy ground RI/WUE LiDAR, 2D and 3D RGB photogrammetry,
cover and instantaneous fAPAR spectral vegetation indices, pyranometer
Biomass and crop growth rate | WUE/RUE LiDAR, 2D and 3D RGB photogrammetry,
spectral vegetation indices
Stem strength / lodging HI LiDAR, 2D and 3D RGB photogrammetry
tolerance
Plant and head number HI LiDAR, 2D RGB photogrammetry, multi
spectral camera & machine learning
Function
Canopy photosynthesis RUE Estimation from biomass and fAPAR
accumulation (see above), instantaneous
high-resolution hyperspectral sensor (in-
filling of 02 band) to measure SIF
Stomatal conductance WUE/RUE Thermal camera, infrared temperature
sensor

RI = radiation interception; RUE = radiation use efficiency; WUE = water use efficiency; HI =
harvest index; fAPAR = fraction of incident photosynthetically active radiation absorbed; SIF
= sun induced chlorophyll fluorescence; RGB = red, green and blue.
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Figure captions

Figure 1: Ideotype breeding

Five key traits identified for a wheat breeding ideotype. Yield gains in harvest index (HI) have
been obtained by the “green revolution” breeding strategies for grain number and dwarf
stature, while future gains over and above these so-called “partitioning traits” are believed
likely to come from improvements in productive biomass and associated radiation use
efficiency. The value of each of these traits depends on the target environment.

Figure 2: Linking genome and phenome

Flowchart to show how genomics and phenomics can be used in combination to enhance
both crop breeding and more mechanistic research targeted to translational outcomes in
crops. Genotyped diversity sets or mapping populations can be utilised in two ways.
Phenome to Genome (P2G) approaches use high- throughput phenotyping tools to
associate Single Nucleotide Polymorphisms (SNPs) and genomic regions with traits of
proposed agronomic advantage in breeding for yield (which can be targeted to an
environment and agronomic system via modelling approaches; i.e.
GenotypeXEnvironmentXManagement). In the current context, radiation use efficiency
(RUE) trait targets might be photosynthetic capacity / efficiency, cooler canopies, digital
biomass or growth rate, spectroscopic trait “surrogates” or raw digital data. QTLs, “perfect
markers” or patterns of SNPs can be used directly in breeding programs for genetic gain or
candidate genes identified for transgenic or gene-editing deployment. Genome to Phenome
(G2P) utilises pre-existing mechanistic knowledge to identify candidate genes likely to be
linked to traits of agronomic importance. In photosynthesis research, allelic variation in
Rubisco, other enzymes of the Benson-Calvin cycle, chloroplast electron transport
components or transcription factors known to control levels of photosynthetic proteins can be
examined in silico across diverse sequenced populations. Diversity in these alleles is then
compared with existing agronomic data and known QTLs to validate the importance of the
SNPs identified. In both cases, proposed causative SNPs can be validated by making and
comparing isogenic lines or “allele mimics” using gene editing. Material identified can be
used directly in crossing, alleles used as gene-editing targets or SNP patterns included to
enrich genome selection models. MAS, marker-assisted selection.

Figure 3: LiDAR profiles of wheat canopies

Evolution of the vertical profiles of LIDAR point density for five different wheat genotypes
(identified as 1001, 1003, 1005, 1007, 1009) at 10 different dates (from 2017-06-05 to 2017-
08-21). The dimension of the X-axis represents the fraction of LiDAR points intercepted by
the canopy at a particular height (Y-axis).

Figure 4: Tractor based proximal crop sensing platform

Tractor-based platform used in Queensland Australia to screen diverse sorghum mapping
populations for radiation use efficiency (RUE). 1) infrared thermal camera 2) hyperspectral
line scanner (3) LIDAR 4) downward pointing spectrometers (two pointing to planted rows
and one to interrow) 5) infrared radiometers and ultrasonic sensors 6) spectrometer hub 7)
thermal radiometer hub 8) power hub 9) Global Positioning System (GPS) and computer 10)
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upward pointing spectrometer (to detect direct solar radiance) 11) GPS antenna 12) tractor
13) weather station (on site)

Figure 5: Canopy temperature sensing

Manned helicopter for airborne canopy temperature (CT) comprising white cargo pod
mounted on skid of helicopter with high-resolution thermal camera inside (a). Visualisation of
airborne CT obtained using (a) travelling in a single pass above an experiment comprising
advanced wheat breeding lines grown in 2x6m plots (b). The rectangles denote the area
sampled from a given plot with darker hues associated with cooler canopies. The red hues
denote the warmer soil between the plots. (c) ArduCrop wireless infrared sensors for
continuous CT measurement. (d) Visualisation of CT time-course across two days for three
elite wheat varieties.
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